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A new discrete method is presented for acoustic modelling of pipes that are coupled by
compact devices. This is based on an approximate source analogy that allows the
communicating devices to be modelled as continuous two-port elements. One of the areas in
which this method "nds application is the acoustic analysis of mu%ers with multiple
perforated pipes. For this case, the present formulation assumes fundamental mode
propagation for simplicity. Also presented in the paper are applications in which perforate
holes are modelled as continuous visco-thermal pipes, the results of which are compared
with the lumped parameter modelling of perforate impedance. In general, the present
method is computationally simpler and more versatile than the more commonly known
distributed parameter method.

( 2001 Academic Press
1. INTRODUCTION

An area in which the theory of sound transmission in coupled cavities "nds application
is the acoustic analysis of mu%ers with multiple perforated pipes, which are extensively
used in engine exhaust systems to reduce the tailpipe noise. In this context, the so-
called distributed parameter method has received considerable attention by authors
aiming to improve its e$cacy in practical applications [1]. In the distributed parameter
method one assumes plane wave propagation in the pipes and models the perforations
as swamped around the pipe wall continuously, the e!ect of which is accounted for by
using a lumped parameter impedance model, usually an empirical or a semi-empirical
one.

A disadvantage of the distributed parameter method is the lack of #exibility in
incorporating acoustic models of the communicating perforations in the analysis. In
particular, the concept of lumped perforate impedance is not completely satisfactory for the
modelling of a coupling device, or a distribution of them, that may be used in place of the
usual holes. A discrete approach may then be more suitable and it is the purpose of this
paper to introduce such an approach.

The idea of modelling a perforate discretely is not new. Sullivan [2] proposed a method in
which perforations are lumped into a number of quasi-static control volumes and their
e!ect is accounted for by using a lumped parameter model of perforate impedance. This
method is now known as the segmentation method. Kergomard et al. [3] presented, for the
case of two cavities communicating via a single hole, a consistent lumped parameter model
for the impedance of a hole and used this in a periodic system formulation to study the
transmission of plane sound waves in the two-pipe con"guration.
0022-460X/01/040679#15 $35.00/0 ( 2001 Academic Press
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The new contributions of the present analysis are: (1) a perforate hole is generalized to the
concept of a compact acoustic device that may have a two-port acoustic model and, (2)
a method is developed for integrating such a device into the analysis of sound wave
transmission in a number of parallel pipes that communicate with each other via that
device. The method was initially developed for the analysis of sound transmission in certain
pipes that communicate via few non-uniform pipes. Later, it proved to be computationally
simpler and more versatile than the distributed parameter method in the analysis of mu%ers
with multiple perforated pipes.

No attempt is made in this paper to study the e!ects of di!erent communicating device
designs. The possibilities are many and can be investigated by the proposed method. Two
applications are presented, however, for the validation of the analysis. These are the
straight-through and the cross-#ow (or, plug) resonators that have been studied
experimentally and theoretically by Sullivan [2]. In these resonators the communicating
devices are in the form of circular holes and it is an objective of the present applications to
compare the modelling of a perforate hole as a continuous tube and as lumped impedance.

2. THEORETICAL FORMULATION

2.1. BASIC CONSIDERATIONS AND ASSUMPTIONS

Consider a number of parallel uniform hard-walled pipes of "nite length enclosed in
a hard-walled pipe that acts as casing. The sound "elds in these pipes are assumed to be
coupled by branch-like devices inserted on the walls of the inner pipes. The communicating
devices may be in the form of a simple circular hole, a louvre, a pipe, or a miniature chamber
or mu%er. The problem is to derive a transfer matrix describing the transmission of sound
waves from the input to the output side of the pack. The solution of this problem requires
a knowledge of the transfer matrices describing transmission of sound waves in the pipes
across a discontinuity created by a coupling device, and the transmission of sound waves
along the device itself. The latter is assumed to be available as an acoustic two-port, and the
former is deduced approximately from one-dimensional analysis of sound transmission in
the pipe, in which the inlet, or outlet, aperture of a communicating device is assumed to be
compact enough to be modelled as a simple source. The part of the coupling device that
protrudes into the pipe is assumed to be small compared to the wavelengths in question and
have no #ow}acoustic interaction. Then, assuming a uniform axial mean #ow and
isentropic plane sound waves with exp(!iut ) time dependence, where u is the radian
frequency, i is the unit imaginary number and t denotes the time; the momentum and
continuity equations for a uniform pipe with a communicating device centered at axial
co-ordinate x"m, where x denotes the pipe axis, can be expressed as, respectively,
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Lx

!ikB v"0 AM
L
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!ikB p#oc
Lv

Lx
"2md(x!m ). (1)

Here, p is the acoustic pressure, v is the partical velocity, k "u/c is the wavenumber, c is the
speed of sound, o is the ambient density, M is the Mach number of the mean #ow velocity,
d(x) denotes a Dirac function at x"0, and m is given by m"ocQ/2S, where S is the pipe
cross-sectional area and Q is the rate of volume injection at the aperture into per unit
volume of the pipe. Equations (1) are the momentum and continuity equations of reference
[4] written for the case of uniform mean #ow and discrete mass injection. The assumption
of uniform mean #ow is plausible when there is no mean #ow through the communicating
device. With through #ow, the axial mean #ow varies slightly in the vicinity of the device,
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but it is known that the e!ect of mean #ow velocity gradient can be taken into account
accurately by assuming an axially averaged uniform mean #ow velocity [1, 4]. Thus, it is
understood that, equations (1) are to be implemented by using an axially averaged uniform
mean #ow velocity if through #ow is present. It should also be noted that, in a solid section
of a pipe having no communicating devices, the continuity equation holds without the
source term. In this case, the solution of equations (1) is classical and is conveniently
expressed in terms of the pressure wave components, p` and p~, where p"p`#p~ and
ocv"p`!p~, as p`(x)"p`(0) exp(ikx/(1#M)) and p~(x)"p~(0) exp(!ikx/(1!M)),
which correspond to waves travelling in #x and !x directions respectively.

A relationship between the pressure wave components just upstream, x"m
~
, and just

downstream, x"m
`
, the discontinuity created by a communicating device can be obtained

from the solution of equations (1). Presented in Appendix A is a solution which embodies
a heuristic correction, e, to m

~
and m

`
as m

~
"m!e and m

`
"m#e, respectively. In the

present analysis this correction, which aims to account for the e!ects of evanescent waves
that may be created in the close vicinity of a communicating device, is assumed to be
acoustically compact, that is, ke@1. Then, the relationship between the pressure wave
components upstream and downstream of a communicating device is given simply as
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where MM denotes the average of the upstream and downstream mean #ow Mach numbers.
Acoustically, a communicating device can be conceived as entraining a lumped inertia or

sound waves. Both cases are of interest here and will be considered separately. In the latter
case, the source strength, Q, is given by Q":; dA where A is the cross-sectional area and
; denotes the normal component of the particle velocity at the inlet or outlet of
a communicating device, which is assumed to be a uniform pipe terminal. Then, including
viscous and thermal losses and a uniform mean #ow but restricting propagation to the
fundamental mode, ; can be expressed as

o c;"h`P`#h~P~, (3)

where P` and P~ denote the acoustic pressure wave components in positive and negative
#ow directions, respectively, and the coe$cients h$ are given in Appendix B. By
convention, #ow is positive in inlet to outlet direction of the communicating device. For
isentropic sound propagation, h$

"$1.
The pressure wave components at the inlet and outlet of a communicating device are

related by the two-port relationship
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Here, the device transfer matrix is assumed to be available from a separate analysis. For
example, for a uniform narrow tube, ¹
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"exp(ikK`l ), ¹
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where the propagation constants K$ are given in Appendix B, and l denotes the length of
the tube, which may include a two-sided end-correction for the added-mass e!ect. In the
case of isentropic propagation, the propagation constants are given by K$

"$1/(1$M),
where M denotes the mean #ow velocity Mach number in the communicating tube.

If a communicating passage between the pipes is relatively short, as for a hole drilled in
a thin-walled pipe, this may be assumed to entrain a lumped vibrating mass in the manner
of the classical Helmholtz resonator model. Under this approximation, communicating
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pipes are coupled through the equation of motion of this mass, which is expressed,
traditionally, as an impedance relationship. A lumped impedance model of
a communicating device can be invoked by using equation (3) with h$

"$1 and replacing
equation (4) by
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device
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, (5)

where f is the normalized impedance of the communicating device.
This formulation can be closed now by the condition of pressure continuity at the inlet, or

outlet, aperture of a communicating device, that is,

p`(m
~

)#p~(m
~

)"P`#P~. (6)

This is an approximate 1-D implementation of the continuity of pressure in the physical
system. Clearly, the correction e has to be compact, as assumed in equation (2), if this
condition is to be physically meaningful. Since communicating devices are assumed to be
compact, this limits the largest value of 2e to about the characteristic size of a device. The
actual value must be determined heuristically. For example, one may use a value that
provides a good "t to the test results, or inspect the sensitivity of the results to di!erent
corrections. For a perforated pipe, the total correction, 2e, is applied by reducing the length
of solid pipe sections by this amount and is subsequently called the pitch correction.

2.2. MODELLING OF COUPLED MULTIPLE PARALLEL PIPES

In this section, the foregoing formulation is applied to derive a wave transfer relationship
across a pack of multiple parallel perforated pipes that communicate with each other
through an arbitrary number of identical devices that are distributed axially on the surface
of the inner pipes. Pipes are numbered from 1 to n, pipe 1 being the enclosing pipe. It su$ces
to derive the wave transfer relationship for a pack in which the inner pipes all have a single
communicating device at the same axial position. The con"guration is shown in Figure 1.
Once the transfer matrix for this case is determined, it can be used in cascade with solid pipe
elements to compute the wave transfer across a pack of multiple parallel pipes having any
axial distribution of communicating devices. If one of the inner pipes does not have
Figure 1. Multiple pipes having communicating devices at same axial position.
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a communicating device at a common axial location, this can be accounted for simply by
setting the inlet and outlet cross-sectional areas of the device equal to zero, see equations
(17)}(20).

Referring to Figure 1, for pipe j, equation (2) is now written as
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Here S
j
denotes the cross-sectional area of pipe j and the subscript j refers to pipe j. If there is

mean through #ow, the mean #ow Mach number M
j
should be understood as the average

of its upstream and downstream values. From equations (3) and (8), it follows that
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where A denotes a cross-sectional area of the communicating device, the subscripts &&inlet''
and &&outlet'' refer to the inlet of the communicating device in an inner pipe ( j"2, 3,2, n)
and its outlet into the enclosing pipe, respectively, and,
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The acoustic two-port describing the sound wave transfer between the inlet and outlet of
a communicating device mounted on the wall of pipe j is now expressed as

P
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where T
j

denotes the (2]2) transfer matrix in equation (4) or equation (5). Applying
equation (6) to the parallel pipes,
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where E"[1 1]. Using equation (12), the foregoing equations are combined as
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Hence, upon substituting equation (14) into equations (10) and (11), and the result into
equation (7), the relationship between the pressure wave components upstream and
downstream of a bank of communicating devices is obtained as
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where j"2, 3,2, n and I denotes a (2]2) unit matrix. Equation (16) is derived for n
pipes all having a communicating device at the same axial position, but it is now clear
that, if one of the pipes does not have a communicating device at this position, the
corresponding form of equation (16) is obtained simply by inputting the inlet and outlet
cross-sectional areas of that device as zero. This ability to deal with any permutation of
coupling devices at the same axial position in a uni"ed manner provides considerable
simpli"cation in the modelling of multiple perforated pipes having axially staggered
perforate patches.

2.3. THE TWO-PIPE ELEMENT

A computer algorithm is available for the implementation of the foregoing theory for any
number of parallel pipes and communicating device models. For the purpose of the present
paper, however, it su$ces to consider applications of the simplest con"guration, that is, the
two-pipe case and it is expedient to give equation (16) for this case explicitly. It is
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where the elements of matrix T
2

are denoted as
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3. NUMERICAL RESULTS

Two important applications of the two-pipe element are the straight-through and the
cross-#ow resonators. Because of their relative simplicity, these resonators provide
a convenient setting for a discussion of the proposed method. Experimental results obtained
under carefully controlled conditions are available for these resonators [2]. These are
compared in this section with the predictions of the present theory.

A perforated pipe is modelled as a pipe having axial and radial discrete distributions of
communicating devices, which are, for the resonators considered, circular holes drilled in
the pipe wall. A radial distribution of identical holes at a given axial location is called
a hole-bank. Hole-banks are separated by solid pipe sections. It is assumed that the
interaction of hole-banks through evanescent waves is negligible. Since the fundamental
mode propagation is assumed, the method is not sensitive to the number of holes in
a hole-bank. Therefore, insofar as the determination of the source strengths is concerned,
a hole-bank can be considered as a single communicating hole of area equal to the sum of
the cross-sectional areas of the holes in the hole-bank. However, the parameters of a lumped
impedance model, or a continuous tube model, of a hole must be determined by using the
actual hole diameter.

The "rst step in the formulation of sound wave transmission characteristics of a resonator
employing a perforated pipe is to derive a four-port model for the perforated section by
combining equation (21) in cascade with the transfer matrices of the solid pipe sections that
separate the hole-banks. This four-port model describes the relationship between the
pressure wave components at the left and right ends of a perforated section in the resonator as
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where the subscripts &&1'' and &&2'' refer to the enclosing and perforated pipes respectively.
Calculation of this (4]4) matrix requires only matrix multiplication. The transfer matrix of
a given resonator is then obtained by application of the boundary conditions. This step is
shown in the following separately for the two resonators considered. Boundary conditions
are assumed to be given in terms of the re#ection coe$cient R, which is de"ned as the
quotient R"p~/p`.
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3.1. STRAIGHT-THROUGH RESONATOR

In this case, as shown in Figure 2, the re#ection coe$cients of the end-caps and, therefore,
R

1, left
and R

1,right
are assumed to be known and the wave transfer is required as

a relationship between P
2, left

and P
2,right

. Multiplying the "rst of equations (28) by
Y
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1, left
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N. Solving this for p`
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and inserting the result in the equation
corresponding to the second row of equation (28) yields the desired relationship:
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A well-studied straight-through resonator is that of Sullivan [2]. The inner pipe of this
resonator has a uniformly drilled 2)49 mm diameter hole pattern of porosity 0)037. The
perforated patch is ¸"66)7 mm long and is positioned centrally in the resonator with its
ends at ¸

R
"¸

L
"6)4 mm from the outer pipe end-caps. The inside diameters of the inner

and outer pipes are D
2
"49)3 mm and D

1
"101)6 mm, respectively, and the thickness of

the inner pipe is 0)81 mm. The details of the hole pattern and the test temperature are not
given in reference [2]. In the present calculations, temperature is taken as 203C and the
perforate patch is assumed to consist of equally spaced 7 hole-banks each having 12 holes.
Figure 3 shows the transmission loss computed by using the present theory with and
without visco-thermal losses in the holes taken into account. In computing these results, the
ambient #uid is assumed to be dry air, and a pitch correction of 0)7d and a two-sided hole
end-correction of 0)75d are used, where d is the hole diameter. The characteristic
corresponding to the modelling of the holes as narrow pipes agrees fairly well with the
experimental results of reference [2] except in the vicinity of the main peak, where they are
few dB higher. The present end-correction is the same as the corresponding term in the
lumped perforate impedance model of Sullivan [2], who used a test-based constant value
for the resistive part of the model. The pitch correction was required in order for the sharp
spike to occur at about the experimentally observed frequency. The transmission loss of this
resonator was computed also by the present method, with the same pitch correction, and
the distributed parameter method, using the lumped perforate impedance model of
reference [2] in both cases. The former solution is shown in Figure 3. The latter solution,
which is not shown, is similar to this characteristic, but the sharp spike occurs at about
2400 Hz, which is appreciably lower than the test value. The axial pitch of the perforations
Figure 2. A straight-through resonator.



Figure 3. Transmission loss of a straight-through resonator with zero mean #ow; ** , the present theory with
continuous visco-thermal pipe model for holes; - - - - , the present theory with continuous isentropic pipe model for
holes; * *, the present theory with lumped impedance model [2] for holes; ] Experiment [2].

Figure 4. A cross-#ow resonator.
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controls the frequency of this spike. The distributed parameter method can be sensitive to
this parameter to the extent to which it is represented in the lumped impedance model of
perforate impedance.

3.2. CROSS-FLOW RESONATOR

In this resonator, shown in Figure 4, the inner pipe has a plug between two perforate
patches so that, when there is mean #ow, this is forced through the holes. In this case, the
re#ection coe$cients of the end-caps of the outer pipe and of the two sides of the plug are
assumed to be known and the wave transfer relationship is required as a relationship
between P

left
and P

right
. This is best obtained by splitting the resonator into three

components in cascade, namely, a plugged expansion, an annular pipe and a plugged
contraction. The wave transfer relation across the plugged expansion and contraction
elements can be derived now as in the straight-through resonator case.

For the plugged expansion (Figure 5(a)), the re#ection coe$cients R
1, left

and R
2, right

are
known and the wave transfer is required as a relationship between P

2, left
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.
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Figure 5. Components of a cross-#ow resonator, (a) plugged expansion, (b) plugged contraction.
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where R
2,right

"M1 R
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and inserting the result into the
equation corresponding to the second row of equation (28) yields
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For the plugged contraction, Figure 5(b), the re#ection coe$cients R
2, left

and R
1,right

are
known and the wave transfer is required as a relationship between P

1, left
and P

2,right
.

Obviously, this is symmetrical to the plugged expansion and, therefore, the wave transfer
relationship can be obtained from equation (32) simply by interchanging the subscripts
1 and 2:

P
1, left

"CS12
!

S
11

R
1,right

Y
2, left

S
22

Y
2, left

S
21

R
1,right

D P
2,right

. (33)

Hence, the wave transfer relationship across the resonator in Figure 4 can be expressed as
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(34)

where T
pipe

denotes the transfer matrix of the annular pipe connecting the plugged
expansion and contraction units. For isentropic plane sound wave propagation, this is of
the form described in section 2.1.

Sullivan has presented an experimental and theoretical study of a cross-#ow mu%er with
and without mean #ow [2]. The inner pipe of the cross-#ow resonator considered by
Sullivan has a uniformly drilled 2)49 mm diameter hole pattern of porosity 0)039. The
perforated patches in the plugged expansion and contraction modules are each
¸
E
"¸

C
"128)6 mm long and are #ush with the plug and end-caps, i.e., ¸

R
"¸

L
"0. The



Figure 6. Transmission loss of a cross-#ow resonator with zero mean #ow; ** , the present theory with
continuous visco-thermal pipe model for holes; - - - - , the present theory with continuous isentropic pipe model for
holes; * *, the present theory with lumped impedance model [2] for holes; ] Experiment [2].
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inside diameters of the inner and outer pipes are D
2
"49)3 mm and D

1
"101)6 mm,

respectively, and the thickness of the inner pipe is 0)81 mm. The details of the hole pattern
and, in the zero mean #ow case, the test temperature are not given in reference [2]. In the
present calculations, the latter is assumed to be 203C. The perforate patch is assumed to
consist of equally spaced 13 hole-banks, each having 12 holes in both the plugged expansion
and contraction modules. Figure 6 shows the transmission loss computed for the case of
zero mean #ow by using the present theory with and without visco-thermal losses in the
holes taken into account. In computing these results, the ambient #uid is assumed to be dry
air, and a two-sided hole end-correction of 0)75 d is used, where d is the hole diameter. No
pitch correction was applied, as it did not improve the correlation with the measured results
[2], some of which are shown in Figure 6. The present end-correction is the same as the
corresponding term in the lumped perforate impedance model used by Sullivan. The
characteristic corresponding to the modelling of the holes as narrow pipes agrees fairly well
with the theoretical results of reference [2] (not shown here). Also shown in Figure 6 is the
transmission loss computed by using the lumped impedance model of Sullivan [2], again
with zero pitch correction.

These characteristics change considerably with mean #ow, but the foregoing models fail
to predict these changes. This is due to the fact that a convective continuous narrow pipe
model of a perforate hole cannot model by itself the e!ects of through #ow on sound
transmission. Therefore, it is necessary to incorporate these e!ects into a continuous tube
model of a perforate hole. A simpler approach is to use a lumped parameter model of hole
impedance that allows for the e!ects of through #ow. This approach is feasible here, because
the perforate thickness is small. Figure 7 shows the transmission loss of the cross-#ow
resonator computed for an inlet mean #ow velocity Mach number of 0)05, by using the
present theory with the lumped perforate impedance model that was developed by Sullivan
[2] for the through #ow case. Other parameters are the same as those described for the zero
mean #ow case, except the ambient temperature, which is 743C for this case. Mean #ow in
the plugged contraction module is assumed to increase linearly from zero to full #ow in the
inner pipe and decrease linearly from full #ow to zero in the chamber, and similarly but in
the opposite sense in the plugged expansion module. Also shown in Figure 7 are some



Figure 7. Transmission loss of a cross-#ow resonator with mean #ow, M"0)05; ** , the present theory with
lumped impedance model [2] for holes; ] Experiment [2].
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experimental results of reference [2]. The present results are also in agreement with the
results of the segmentation method [2] (not shown here).

4. CONCLUSION

A new method has been presented for acoustic modelling of pipes that are coupled by
compact communicating devices. Mu%er components incorporating perforated pipes were
emphasized as a signi"cant application area of the method; however, its potential is not
limited with these applications.

The implementation of the present formulation will be limited by the compactness
condition of the communicating devices and the condition of fundamental mode
propagation in the pipes. It is possible to remove these restrictions under the same
conceptual framework, but at the cost of added mathematical complexity. In this context,
such an extension of the present method has yielded promising initial results in the
modelling of the three-dimensional e!ects in the casing enclosing the perforated pipes. This
extension, which is of importance for relatively short casings, will be published at a later
date.

In general, the present method is computationally simpler and more versatile than the
distributed parameter method in acoustical analysis of multiple perforated pipe mu%ers. It
has been applied to a variety of automotive mu%ers including multiple-path ones such as
the three-pass mu%er. In relatively high porosity cases, it gives almost the same results as
the distributed parameter method in the frequency ranges of interest in automotive
applications when used with the same lumped parameter model of perforate impedance. In
the relatively low porosity cases, however, the present method should be preferred to the
distributed parameter method because of its sensitivity to the axial pitch of perforations.
Also, the present method is more versatile in dealing with cases in which perforate patches
in di!erent pipes are staggered axially so that they overlap partially. The computational
advantage of this method comes from the fact that no complex eigenvalue problem or root
extraction problem needs to be solved as in the distributed parameter method.

A hole perhaps provides the most practical way of coupling two pipes, but this does not
preclude the possibility of developing other coupling devices that may "nd technological
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use. The present method allows the use of two-port models of communicating devices and
can be used to study the e!ects of such devices at the design stage.

The main problem in the modelling of a communicating device as an acoustic two port, is
accounting for the e!ects of mean through #ow and further research is needed in this area.
For a communicating device such as a hole drilled on a thin-walled pipe, this problem can
be resolved by using a lumped parameter model.
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APPENDIX A: ACOUSTIC WAVE TRANSFER ACROSS A SIMPLE SOURCE PLANE

This appendix presents a solution of equation (1). Using matrix notation, equation (1) can
be expressed as

L/Lx P (x)"HP(x)#mBd(x!m) , (A.1)

where

P (x)"C
p`(x)

p~(x)D , H"ikC
(1#M)~1 0

0 !(1!M)~1D , B"C
(1#M)~1

!(1!M)~1D. (A.2)

The general solution of equation (A.1) is [5]

P (x)"[T]x
0
c#mP

x

0

K(x, i)B (i)d (i!m) di. (A.3)

Here, c denotes a vector of integration constants and the Green function K (x, i) is

K(x, i)"[T]x
0
([T]i

0
)~1, (A.4)

where

[T]x
0
"[T]xm`e[T]m`e

m~e[T]m~e
0

, (A.5)

[T]m~e
0

"exp(H
~
x), (A.6)

[T]xm`e"exp(H
`
(x!m!e)), (A.7)



692 E. DOKUMACI
where H
`

and H
~

denote the matrix H evaluated for M"M
`

an M"M
~
, where M

`
and M

~
denote the mean #ow Mach numbers for x)m!e and x*m#e, respectively,

and e denotes a heuristic correction that is introduced to account for the e!ects of
evanescent waves that may be created in the vicinity of the source discontinuity. It is
assumed that the mean #ow Mach number in the interval m!e)x)m#e is uniform and
equal to the mean value MM "(M

`
#M

~
)/2. Then,

[T]m`e
m~e"exp(2H1 e), (A.8)

where H1 denotes the matrix H evaluated for M"MM . The Green function can be expressed
as

K(x, i)"exp(H
~
(x!i)), x)m!e, (A.9)

K(x, i)"exp(H
`
(x!i)), x*m#e, (A.10)

K(x, i)"exp(H1 (x!i)), m!e)x)m!e. (A.11)

Hence, restricting x to the positive axis, equation (A.3) becomes

P(x)"[T]x
0
c#m exp(H1 (x!m )B1 H(x!m )), (A.12)

where H(x) denotes a Heaviside function at x"0 and B1 denotes the matrix B evaluated for
M"MM . The vector c is determined by writing the foregoing equation for x"m!e.

c"([T]m~e
0

)~1P (m!e)"exp(!H
~
(m!e))P (m!e). (A.13)

Then, from equation (A.10),

[T]x
0
c"exp(H

`
(x!m!e)) exp(2He))P(m!e), x*m#e. (A.14)

Hence, putting x"m#e into equation (A.12) yields the following wave transfer
relationship across a simple source discontinuity:

exp(!H1 e)P (m#e)"exp(H1 e)P(m!e)#mB1 . (A.15)

To the author's knowledge, this result has not been published elsewhere. If e is compact, i.e.
ke@1, then equation (A.15) simpli"es to

P (m
`
)"P (m

~
)#mB1 . (A.16)

This relationship is used in the present analysis as the basic relationship describing the
sound wave transfer across a communicating device. If there is no through #ow across the
communicating device, then MM "M and B1 "B.

APPENDIX B: SOUND TRANSMISSION IN A NARROW PIPE

Summarized in this appendix are expressions for sound wave transfer in a uniform
narrow pipe carrying a mean #ow. The sound pressure is given by [6]

p (x)"p`(x)#p~(x), (B.1)
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where
p$(x)"p$(0) exp(ikK$x). (B.2)

For a circular pipe, the propagation constants K$ are computed from the dispersion
equation

C
K

1!MKD
2
"!C

J
0
(ba)

J
2
(ba)DCc#(c!1)

J
2
(pba)

J
0
(pba)D , ba"sJ i(1!KM) . (B.3)

Here, a denotes the radius of the pipe, J
n
denotes a Bessel function of order n, c is the ratio of

speci"c heat coe$cients, p2 denotes the Prandtl number and s is the shear wavenumber,
which is de"ned as s"aJ (ou/k), where k is the shear viscosity coe$cient and u is the
radian frequency, and exp(!iut) time dependence is assumed for the #uctuating quantities.

The particle velocity is given by

ocv (x, r)"h`(r)p`(x)#h~(r)p~(x), (B.4)

where r denotes the radial co-ordinate and

h$(r)"[K$/1!K$] [1!(J
0
(b$r)/J

0
(b$a))]. (B.5)

Integration of equation (B.4), which is equation (3) of the main text, over the pipe
cross-section then yields

h$

"[!K$/(1!K$)] [J
2
(b$a)/J

0
(b$a)]. (B.6)

This average value occurs in equations (10) and (11).


	1. INTRODUCTION
	2. THEORETICAL FORMULATION
	Figure 1

	3. NUMERICAL RESULTS
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

	4. CONCLUSION
	REFERENCES
	APPENDIX A: ACOUSTIC WAVE TRANSFER ACROSS A SIMPLE SOURCE PLANE
	APPENDIX B: SOUND TRANSMISSION IN A NARROW PIPE

